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Flow-acoustic interaction near a flexible wall 
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The Lighthill theory has been extended so that it may be used to determine the flow 
noise induced by a turbulent boundary layer over a plane homogeneous flexible 
surface. The influence of the surface properties and the mean flow on the sound 
generated is brought out explicitly through the use of a Green function. It is found 
that there is an  analogy between the sound generated by turbulence and equivalent 
sources placed between a surface with the same compliance as the physical surface 
and a hypothetical vortex sheet positioned a t  the outer edge of the boundary layer. 
This analogy is used to determine the spectrum of the surface-pressure fluctuations 
under statistically stationary turbulence. The form of this wall-pressure spectrum is 
investigated in detail for three particular types of surface : rigid surfaces, bending 
plates and sound-absorbent liners. 

1. Introduction 
A turbulent boundary layer over a flexible surface generates sound. The flexible 

surface can influence the sound field in two ways: it may just reflect the sound but 
i t  could also alter the turbulence. The Lighthill (1952) theory provides an exact way 
of investigating sound generation by turbulence, and this paper describes an 
extension of the Lighthill theory to display the effect of the surface properties and 
the mean flow on the generated sound. It is shown that the sound produced by 
turbulent sources within a boundary layer may be modelled by quadrupoles placed 
between a surface with the same compliance as the physical surface and a hypothetical 
vortex sheet positioned a t  the outer edge of the boundary layer. The effects of the 
surface properties and the mean flow are displayed explicitly through the use of a 
Green function. This is a generalization of the Green functions used by Dowling, 
Ffowcs Williams & Goldstein (1978) to investigate the interaction between the mean 
flow and the sound generated by a jet, and by Ffowcs Williams & Purshouse (1981) 
to determine the incompressible elements of the pressure disturbance generated by 
turbulence near a hard wall; the case of uniform flow over a compliant wall was 
considered by Mohring & Rahman (1979). The radiated sound field is finite, and this 
imposes restraints on our Green function; i t  must not excite any instabilities of the 
analogous problem. The Green function is therefore only weakly causal whenever the 
model problem has instabilities. The analogy contains elements which admit that, 
when the mean-flow profile is unstable, then in addition to the turbulence-causing 
fluctuations in the surface and sound, the surface motion and sound waves also affect 
the turbulence. 

This extension of Lighthill’s theory is used to determine the spectrum of the 
pressure fluctuations on the flexible surface. Particular attention is given to  those 
spectral elements with wavelengths long in comparison with the boundary-layer 
height, and with sonic or supersonic phase velocities. The form of this pressure 
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spectrum is of interest in both underwater and aeronautical applications. Most of the 
previous work on wall-pressure spectra has been concerned with the incompressible 
regime, where spectral elements have low subsonic phase speeds (a review of this work 
is given by Willmarth 1975; Ross 1976). Ffowcs Williams (1965) was the first to 
investigate the sonic and supersonic spectral elements which are strongly influenced 
by compressibility. Pfowcs Williams (1965, 1982) determined the form of the pressure 
spectrum for the case of uniform flow over a hard surface. He found that the pressure 
spectrum had a non-integrable singularity for spectral elements with sonic phase 
speeds. Bergeron (1973) analysed this singularity in greater detail and showed that 
this non-integrable singularity arose from a two-dimensional form of Olbers’ paradox, 
because the turbulent source region is considered to  be of infinite extent and the sound 
field from each source element does not decrease rapidly enough with distance for 
the integrated effect to be finite. He demonstrated that when the source region has 
finite extent L there is still a singularity for spectral elements with sonic phase speeds 
but that  the singularity is integrable ; the magnitude of the integral being proportional 
to In L. Howe (1979) investigated the effect of viscous stress on the singularity. He 
found that when viscosity is included the pressure spectrum remains finite, but its 
maximum value is so large that viscous stress is unlikely to be the dominant 
controlling mechanism in practice. The aim of the present work is to  determine the 
effects of finite surface impedance and the flow profile on the form of the pressure 
spectrum, and in particular on the position of its peaks and singularities. 

An expression for the low-wavenumber surface-pressure spectrum on an arbitrary 
surface is derived in $ 2 .  This form brings out the dependence on the main flow and 
the surface properties. It is investigated in detail in $3  for particular surfaces. The 
first case considered is that  of a hard surface. The inclusion of the boundary-layer 
flow does influence the surface-pressure spectrum. When the flow profile was 
neglected, Ffowcs Williams found that the pressure spectrum was singular for all 
spectral components whose phase speed was equal to  the sound speed. The inclusion 
of the boundary layer controls this singularity for all upstream-propagating spectral 
elements, but enhances the singularity for downstream-propagating elements. For 
these components the singularity is a double pole, and is stronger than the single pole 
found by Ffowcs Williams for uniform mean flow. This singularity is due to a 
‘trapped ’ mode, which propagates downstream supersonically in the boundary layer 
and subsonically in the flow outside it. The energy in this mode therefore remains 
trapped within the boundary layer and only decays slowly with distance from the 
source. 

The next case considered is that  of a bending plate with its front surface exposed 
to the turbulent boundary layer and backed by a void. Both the finite surface 
impedance and the boundary layer can influence the pressure spectrum. It is found 
that plates in air are generally sufficiently massive compared with the effective fluid 
loading to behave like a hard surface. But in underwater applications the fluid loading 
is greater and the Mach number is low, so that the pressure spectrum is dominated 
by the surface properties. I n  this limit V ,  the speed of flexural waves in the plate 
in uacuo, plays a crucial role in determining the form of the pressure spectrum on 
the plate. If V is subsonic then the surface has a ‘mass-like’ response for modes with 
sonic phase velocity, and in this case the pressure spectrum has a double pole for 
spectral components whose phase velocity is nearly equal to V ,  while for elements 
with sonic phase speeds the pressure spectrum (which was singular in the hard-surface 
case) remains finite, controlled by the finite surface impedance. The position of the 
singularity is quite different when V ,  the flexural wave speed in uacuo, is supersonic; 
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then the plate has a ‘spring-like’ response for modes with sonic phase speeds, and 
a singularity occurs in the pressure spectrum for sonic spectral elements. These 
non-integrable singularities again arise owing to  a form of Olbers’ paradox because 
the plate and the turbulence are assumed to be of infinite extent and there is a mode 
trapped near the surface in which the pressure only decays slowly with distance from 
the source. 

The final case considered is that of a surface covered by sound-absorbent material 
with an impedance similar to that used in the suppression of fan noise in aircraft 
engines. Then both the mean flow and the surface parameters affect the pressure 
spectrum. The damping due to the energy absorbed by the surface ensures that there 
are no singularities in the surface-pressure spectrum; but the pattern observed in the 
case of the bending plate is still apparent. For example, the pressure spectrum for 
spectral elements with sonic phase speeds is larger for a ‘spring-like’ surface than 
it is for a surface with a ‘mass-like’ response. This is because for a spring-like surface 
only damping prevents the pressure spectrum from being singular for these sonic 
spectral components, while for a mass-like surface both the finite surface impedance 
and the damping control the level of the pressure spectrum. 

2. Sound generation by turbulence near a flexible wall 
The flow over a flexible wall produces sound and turbulence. In  our problem the 

flexible wall is taken to be only linearly disturbed from its rest position C, on the plane 
surface x3 = 0. The impedance is uniform over the whole surface, and the relationship 
between the surface-pressure disturbance p -p ,  and displacement 6 can be conveni- 
ently expressed in terms of their Fourier transforms : 

(2.1) P-P, (k, w )  = X(k, w )  E(k, w ) ,  

where 

and 5 is defined in a similar way. 
Far from the wall the flow has a mean subsonic velocity U, parallel to the mean 

wall position. But in the vicinity of the wall the mean flow is brought to  rest. In  the 
distant velocity field the sound generation is described by the convected form of 
Lighthill’s acoustic analogy, but near the surface i t  is more convenient to  use the 
stationary form. To facilitate the use of different equations in the two regions we 
introduce a control surface S. We choose S to lie outside the region of turbulent flow, 
and to be initially plane. Subsequently S is convected with the material fluid particles. 
S divides the fluid into two regions V, and V,, as shown in figure 1. V, contains the 
turbulent flow, while throughout the region V, the flow is only linearly disturbed from 
the mean flow U. 

p -po (k, w )  = (p -po)  (x, ,  x2,  0, t )  e-i(wt+klsl+kzsz) dx,dx,dt, 

The only disturbances in V, are convected acoustic waves, and so 

where DID? is the convected operator a/&+U . V ,  and p o , c  are the unperturbed 
values of density and sound speed. We define a Heaviside function K to be unity in 
V, and zero elsewhere. 

Muliplying (2 .2)  by K and rearranging gives 

( & - c 2 v 2 ) ~ ( p - p o )  = 
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FIGURE 1. The geometry of the turbulent boundary layer. 

where v is the fluid velocity. We can convert this into an integral equation by 
following the same procedure as that used by Dowling et al. (1978). We define a 
reciprocal Green function G, by 

and G, must have incoming behaviour at infinity, in the variables y ,  r. We also insist 
that G, remain finite as 7 +. - CO, and that G, 0 as r +. CO. These conditions are 
not enough to determine G, uniquely; G, is not completely specified until boundary 
conditions on S are given. 

From the definition of the &function we can write 

= JQ, P((p - po) (g - c2 V2) C, d3y d7 

from the definition of G,. After integration by parts 

~ ( ( P - P , )  ( x , t )  = Jm G , ( ~ - c z V ~ ) H ( p - - p , ) d 3 y d r .  

Terms at  infinity vanish because ~ ( ( P - P , )  has outward-wave behaviour and G, has 
inward-wave behaviour. Hence, from (2.3), 

after further integration by parts. 
A property of the Heaviside function is that 



Flow-acoustic interaction near a Jlexible wall 185 

for any function K ( y ,  7 ) .  n is the unit normal to the surface S in the direction shown 

The surface S is positioned where the flow is only linearly disturbed from the mean 
flow U, and so these surface terms may be linearized. ni(vt-  Ui )  can be expressed 
in terms of the surface displacement f ; ,  and then the integral can be evaluated over 
the initial position of the surface 8,: 

After further rearrangement we obtain 

This expression describes the radiated sound field. It is, however, impossible to 
estimate accurately the linear surface terms in (2.5). So as in the jet-noise problem 
(Dowling et al. 1978) we will investigate the region V, to try to eliminate these surface 
terms. 

In  V, the flow is turbulent and generates noise. This generation process can be 
described by Lighthill's equation 

where zi = p v t v j + p i j -  (p-po)c2St, ,  and p i j  is the compressive stress tensor: 
p a j  = @ - p o ) S i j - e t j ,  with etj being the viscous stress. Equation (2.6) is exact. It 
results from a combination of the equations of mass and momentum conservation. 
We introduce H ,  a Heaviside function which is unity in V, and zero elsewhere. All 
the surfaces bounding V, are impenetrable to the fluid, and so multiplying (2.6) by 
H and rearranging leads to the Ffowcs Williams-Hawkings (1969) equation 

We define a reciprocal Green function Go by 

(&-c2Vz)Go = S ( x - y , t - T ) ,  

and Go is bounded as 7-+--co and GO+O as r--f  00. These conditions do not 
completely specify Go. Then the same procedure that leads from (2.3) and (2.4) to 
(2.5), with Go replacing G, and (2.7) in place of (2.3), gives 

where C,, is the initial position of the compliant surface. 
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Adding (2.5) and (2.9) gives 

aG, aGo 

We can use the arbitrariness in Go and GI to eliminate the potentially misleading linear 
surface terms. If we choose 

on So aGo - dG, a2Go - D2G, 
ay3 aY3’ a 7 2  o r ~  (2.10) 

the surface terms on So vanish. We would like to find other boundary conditions on 
Co to eliminate the surface terms there. By an application of Parseval’s theorem we 
can write 

-pow2E(k, O )  GO(O, -k, - w )  

This vanishes if _- 
aGo 

4 Y  3 

(2.11) poo2Go(0, k, w )  = X (  - k, - w )  __ (0, k, w ) .  

This boundary condition, together with (2.10) and the initial conditions, is enough 
to determine Go and G, uniquely. With this choice of Go, the radiated sound field is 

The sound is generated by the Lighthill quadrupoles within the turbulent boundary 
layer and by viscous stress on the flexible surface. Purshouse (1978) has obtained a 
similar expression for the unsteady incompressible pressure fluctuations produced by 
turbulence near a compliant wall. He chose to apply the rigid-wall condition to  his 
Green function. Our analysis differs from his in that the flow is compressible and also 
because we apply a more general impedance condition to the Green function and so 
are able to eliminate the surface-displacement term. Howe’s (1979) work has shown 
that the surface term involving the viscous stress has a negligible effect for the 
high-Reynolds-number flows of interest. 

The effect of the flexible surface and of the variation in mean flow is described by 
the function Go. So far Go and G, have arisen simply as useful functions which 
eliminate certain potentially misleading surface terms. The reciprocal theorem 
derived in the appendix shows, however, that  

G(Y,.rlX,t) = ~ ( Y , ~ ) G o ( Y , ~ 1 x , ~ ) + ~ ~ Y , 7 ) G , ( Y , ~ 1 x , ~ )  

has a simple physical meaning; it is the pressure response at the observer’s position 
( x ,  t )  that would be produced by a point source a t  ( y ,  r )  placed between a surface with 
the same impedance as the physical surface and a hypothetical vortex sheet 
positioned a t  the outer edge of the boundary layer. 
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The equations (2.4), (2 .8) ,  with boundary conditions (2.10), (2.11), and the initial 
conditions, are sufficient to determine Go and Q1 uniquely. Go can be evaluated by 
taking Fourier transforms in yl, y, and 7 .  The method of solution is a straightforward 
application of the techniques described by Morse & Peshbach (1953) and the details 
will not be given here. We find that, for an observer position x on the flexible surface, 

(2.13) 

where 
[(w2y1 - (w + U ,  k$ yo) eiy0(h-y3) - ( d y ,  + (w + U ,  yo) e-i70(h-y3)} X'+ 

Fl = 

F = ( i yoX++p0u2)  ( w z y l - ( w +  Ulkl)2 y o ) e i @  

F(k, w )  
9 

+(iyoX+-p0w2) (w2y1+ ( w +  Ulkl)z yo )  eci7oh, 

91 = ~ ( 7 - t )  + k a ( ~ a - x a ) .  

The repeated suffix a is to be summed over 1 and 2 so that 

k a ( y a  - x a )  = k ( ~ 1  -XI) + ~ ( Y Z  -xZ). 

X+(k, w ) ,  the complex conjugate of X(k, w ) ,  is equal to X (  -k,  - w )  because 
X(k, w )  ( =  (p -po)  (k, w) /E(k ,  w ) )  is the ratio between the transforms of two real 
functions. h is the distance of the control surface So above the flexible surface, and, 
since 8, is chosen to lie just outside the region of turbulent flow, h is the boundary- 
layer height. The coordinate system has been chosen so that the mean position of the 
compliant surface lies in the plane y3 = 0, and the velocity U is in the l-direction; 
U = (U,, 0,O). Further, 

The root of yo is chosen so that, when real, yo has the sign of w ,  and when yo is purely 
imaginary Im yo is positive. Thc root of y1 is chosen in a similar way, with y1 having 
the same sign as w +  U,kl when real, and Im y1 positive when y1 is purely imaginary. 
These roots lead to the required inward-wave behaviour in (y, 7 ) .  The k,, k ,  contours 
of integration lie along the real k,, k ,  axes. The w-integral is to be evaluated along 
the weakly causal contour which lies just above the real w-axis, in order to satisfy 
the two conditions Go 0 as r + cx), and that Go remains bounded as r + - co. 
Whenever the analogous problem is unstable, the integrand in (2.13) has a pole in the 
upper half w-plane, and Go will not be strictly causal. Jones & Morgan (1972) have 
shown that a strictly causal Green function can excite instabilities, but we have only 
derived the representation (2.12) for a finite Green function. Our analogy is therefore 
for a weakly causal Green function and contains elements that admit that the 
relationship between the turbulence, the surface motion and the sound field is not 
one of cause and effect. This seems to be entirely reasonable because, when the mean 
flow is unstable, then, in addition to the turbulence causing the surface motion and 
sound, the surface motion and the sound field can also produce turbulence. When 
the boundary-layer-surface combination is stable the integrand in (2.13) has no poles 
in the upper half w-plane and our Green function is strictly causal. I n  most practical 
situations the analogous problem will be unstable, because it is its instability waves 
that generate the turbulence. 

B L W  128 
7 
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The derivatives of G, can easily be evaluated by differentiating (2.13): 

1 
I$ . (y3 ,  k ,  w )  eigl d 2 k d w ,  

PG,  

where Fap = -ICaICpF, (a  and ,5 may take the values 1 and 2),  (2.14) 

with 
4 3  = -y;E;,  Fa3 = Ga = Yak,&, 

When these forms for the derivatives of Go are substituted into (2.12) and the small 
shear-stress terms are neglected, the representation theorem becomes 

1 / H ! Q j ( y , 7 ) I $ j ( y 3 ,  k ,w)e ig1d2kdwd3yd7 .  (2.15) 

Equation (2.15) gives a formally exact description of the perturbations on the 
flexible surface, and the surface-pressure spectrum can be evaluated from it. The 
Fourier transform ps(k,  w )  of the surface-pressure perturbation is 

&(k, w )  = [c2 (p  -pa) (xl, x2,  0, t )  e-ikaza-iwt d2x d t ,  

(27d3 
C21P--Po)  (x, t )  = 

and taking transforms of (2.15) leads to 

&(k, w )  = H!Qj(y, 7 )  - k ,  - w )  e--iwr-ikag~d3y d7 

= J T,.(y,, k ,  w )  q y , ,  - k ,  - w )  dY3, 

where qj(y3, k ,  w )  is the Fourier transform of H E j :  

(2.16) 

The surface-pressure spectrum P(k,  w )  may now be evaluated from 

1 
P(k,w)  = ~ !ps(k, w ) p , ( k ’ ,  w’ )  d2k’ dw‘, (2.17) 

(277)3 

where the overbar denotes an ensemble average. Equation (2.16) shows that 

F s  ( k ,  w )  l>s(k’, w’ )  

_ _  
The ensemble average operates only on TijTkz since all the other terms in this 
expression are deterministic. Rewriting !Qj in terms of H q j ,  we obtain, for statistically 
stationary turbulence, 

Ej(y3, k ,  w )  T,,(yj, k’, w ’ )  = (2n)3 ‘W+k’)  8 ( w + w ’ )  T , j k ~ ( Y s ,  k’, w ’ ) ,  (2.19) 

where $ jkz  is the Fourier transform of the cross-correlation of the turbulent sources : 
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Combining (2.17)-(2.19) shows that the surface-pressure spectrum is given by 

P(k, w ,  = J &j(y3, k, w ,  Fkl(yi> -k,  - w )  %ijkl(y3, yijk, w ,  dy3dyi .  

From an inspection of the function defined in (2.14) we see that 

189 

Fkl(yh, -k,  - w )  = FL,(Yj, k,w) ,  

where the dagger denotes the complex conjugate. The surface-pressure spectrum may 
therefore be rewritten as 

P(k, w ,  = 4,j(y3,  k,  w ,  '&Z(Yh> k,  %jkl(Y33 yh, k, dy3dyj.  (2.20) 

Fii is the function given in (2.14). It depends on the surface compliance, the mean 
flow velocity and on the thickness of the boundary layer. Equation (2.20) shows that 
&FL, relates the spectrum of the surface pressure to %jkl ,  a spectrum function 
representing the turbulent sources. This is a useful form because in practice, while 
we know very little about the structure of the turbulent source terms Ti j ,  we can make 
some reasonable assumptions about the behaviour of their spectral function Yiikl. 

In  many of the flows of practical interest the boundary layer is thin in comparison 
with the wavelength. I n  this limit I$ simplifies considerably and we can write 

P(k, O )  = D i j  OLl j%jkl(y3> Y;> k, w ,  dy3dyi, (2.21) 

where Dii is the compact limit of 4,: 

w2ka y l X t  yi(w + u, k,)2X+ 
E(k ,  0) E ( k , w )  ' D33 = 

Da3 = D3, = 

with 
E ( k ,  w )  = i d y l  Xt -poo2(w + U, k1)2  +p0w4iy, h + (w + U, k# y:hXt. (2.22) 

Terms of order whlc have been neglected in comparison with unity. If the acoustic 
analogy has been successful in extracting the essential field structure, %jkl should 
contain no subtleties of form and should be independent of compressibility effects. 
qjkl can therefore be estimated on the basis of incompressible flow theory. We will 
non-dimensionalize the integral in (2.21) and write 

j % j ~ ( V 3 7 Y j . k -  w)dY3dYb = Pg V h 5 Q i j k ~ ( h k , h w I U , ) ,  

and then the pressure spectrum simplifies to 

P(k, w )  = Di jD&,p i  G h 5 Q i j g l ( h k ,  hwlU, ) .  (2.23) 

The product Dii DLl describes how the turbulent field &gjkZ radiates sound within the 
boundary layer over the flexible surface. An investigation of the form of Dij for any 
particular surface of interest will demonstrate the influence of the surface properties 
and the mean-flow profile on the pressure spectrum. 

7-2 
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3. The wall-pressure spectrum on various surfaces 
Equations (2 .22 )  and (2 .23)  describe the influence of the surface structure and 

mean-flow profile on thc wall-pressure spectrum. In this section the form of the 
pressure spectrum will be investigated for several simple surfaces. The first case 
considered is that of a hard surface. 

3.1. A hard surface 

The normal surface displacement always vanishes on a hard surface, and so X is 
infinite. From (2.23) the pressure spectrum is given by 

P(k, 0) = DijDLlp: r4h5Qijki(hk, whlui ) ,  (3.1) 

where D, can be evaluated by taking the limit X + 00 in ( 2 . 2 2 ) :  

with E(k,w) = iw2y,+ ( w +  U , k , ) 2 y ~ h .  (3.2) 

Figure 2 shows plots of the variation of the functions Dij against non-dimensional 
wavenumber k , c / w  for a Mach number M ,  = U,/c of 0.2,  and a non-dimensional 
boundary-layer height whlc = 0.1. Before describing the detail in the graphs, i t  is 
convenient to discuss some analytical results. First, the wall-pressure spectrum 
simplifies greatly for spectral elements with highly supersonic phase velocities. Then 
IwI % elk/, and D,,, the largest term in D,,, is equal to  - i w / c .  Hence, from (3.1), 

This agrees with the scaling law for highly supersonic spectral components obtained 
by Ffowcs Williams (1965, 1982). Figure 2 ( b )  illustrates the form of 20 log,, IcD,,/w(. 
It shows that log,,IcD33/wl is very nearly equal to zero for Ick,/wl < 0.5, i.e. 

and in fact the ‘highly supersonic’ limit is attained whenever the phasc speed is 
greater than about 2c. 

If E ( k ,  w )  has any zeros for real (k, w )  they will lead to a singularity in the pressure 
spectrum. It is apparent from an inspection of (3.2) that E(k,w) vanishes when y1 
is imaginary and yo is real. This only happens when k ,  and w are opposite in sign, 
i.e. for downstream-propagating modes. For a thin boundary layer the position of 
these zeros can be found by solving E ( k , w )  = 0 iteratively in powers of h. It is 
convenient to describe the position of these zeros in terms of new variables k and Q,, 
where k ,  = - k cos Q,, k ,  = - k sin $ and k (  = T lkl) has the same sign as w .  Then w / k  
is the phase speed of the (k,w) spectral element, and c j  denotes its direction of 
propagation. E(k ,  w )  only vanishes for real k and w when cos Q, is positive, and then 
the zeros are a t  

w W3h2 ( 1  +&MI cos Q , ) 2  
k = +  f 2M: eos2 Q, ~ + o(h3). (3.3) 

c3 ( I  + M ,  cos Q,)8 c(  1 + M ,  COB Q,) 

These are modes which propagate downstream supersonically within the stationary 
fluid in the boundary layer, but they are just subsonic in the moving stream. DaP 
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FIGURE 2. Plots of (a) 2 = 20 log,, IcD,,/wl, ( b )  z = 20 log,, vus. non-dimensional wavenumber 
K = k , c / w  for a hard surface with k, = 0, M ,  = 0 2 ,  w h / c  = 01. 

therefore has a simple pole for downstream-propagating spectral elements. In  figure 
2, K = k ,  c / o  is negative for downstream-propagating spectral components and 
positive for the upstream-propagating elements. The curves in figure 2 therefore 
clearly demonstrate that, D,,, and hence the predicted pressure spectrum, is larger 
for downstream-propagating modes with sonic phase speeds than it is for upstream 
propagating modes. Roebuck & Richardson (1981 private communication) have 
observed this in underwater experiments. 

The pressure spectrum involves products DijDkl, and so a simple pole in Dij 
corresponds to a double pole in the predicted pressure spectrum. Ffowcs Williams 
(1965) found that, if the mean-flow profile is neglected, the pressure spectrum has a 
simple pole for all spectral elements with sonic phase speed. The inclusion of the 
mean-flow profile controls that singularity for all upstream-propagating modes, but 
enhances the singularity for modes propagating downstream. Bergeron (1973) and 
Ffowcs Williams (1982) were able to interpret the singularity found by Ffowcs 
Williams in terms of a slow decay rate of the sound field with distance R, from a source, 
because the sound field from each source element decays like R-l and the turbulent 
source region is assumed to be of infinite extent. They showed that if this region of 
turbulence is assumed to be of finite size, the pressure spectrum is still singular, but 
the singularity is integrable. The strength of the integral depends on In L,  where L 
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is the linear dimension of the turbulent region, so that when I, is large the integrated 
pressure spectrum is still large. A similar explanation can be applied to  the case with 
a mean-flow profile. The zeros of E ( k , w )  given in (3.3) describe downstream- 
propagating free modes which are supersonic within the slowly moving fluid in the 
boundary layer but subsonic within the moving fluid outside it. The energy in these 
modes therefore remains ‘trapped’ within the boundary layer, i.e. within a disk of 
height h, and conservation of energy then suggests that  downstream of a source the 
pressure disturbance will only decay like R-4, while upstream the disturbance will 
decay more rapidly. This prediction can be confirmed by evaluating the k ,  and k,  
integrals in the expression for Go in (2.13) asymptotlically for large R. These modes 
decay more slowly with distance from the source than those in a uniform stream, and 
account for the stronger singularity in the pressure spectrum under an infinite region 
of turbulence. For a finite but large patch of turbulence the singularity will be 
integrable, but the value of the integral will still be large. The effects of finite source 
size will be discussed in a later paper. 

The inclusion of the boundary-layer profile on a hard surface has therefore 
eliminated the singularity from the predicted hard-wall pressure spectrum for 
upstream-propagating modes, but enhanced the singularity for downstream- 
propagating modes. 

3.2. A bending plate 

Admitting that the surface has finite mass per unit area has considerable consequences 
for the pressure spectrum. Consider a bending plate of thickness d with its front 
surface exposed to the turbulent boundary layer and backed by a void. For such a 
plate X(k, w )  = mu2- Bk4, where m is the mass of the plate per unit area and 
B = Ed3/12(l -vz). E is Young’s modulus, and v Poisson’s ratio. Then, from (2.22) 
and (2.23), the surface-pressure spectrum is given by 

where 

k,w2yl(mo2 - Bk4) D,, = D,, = 
E(k, 0) 

(3.4) 

with 

E ( k , w )  = ( i w 2 y l + ( w +  Ulkl)z y i h )  (mw2-Bk4)-p0w2(w+ U l k , ) 2 + p o ~ 4 i y l h .  (3.5) 

It is immediately obvious that the pressure spectrum vanishes for spectral elements 
whose phase speed is equal to V = (Bw2/m)d, the phase speed of flexural waves in the 
plate in VQCUO. 

There will be a singularity in the pressure spectrum if E ( k ,  w )  vanishes for real k 
and w .  For heavy plates and thin boundary layers the position of any zeros can be 
found by solving E ( k ,  w )  = 0 iteratively in powers of h, and m-l. This procedure shows 
that E ( k , w )  vanishes for real w and k near 

0 
- = c ( 1  + M I  cos (b) (3.6) k 
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FIGURE 3. Plots of z = 20log1,(cDll/w( vg. non-dimensional wavenumber K = k,c/w for a bending 
plate with k ,  = 0, M ,  = 0, and (a) mw/poc = 5, N = 08, ( b )  mo/poc = 10, N = 1.2. 

if 

where N = V / c .  E(k ,  w )  also has a zero on the real axis near 

W 
-=  I' if V<l+M,cosq5. 
k 

The first inequality, (3.7), demonstrates that  the relative magnitudes of the fluid- 
loading factor poc/mw and the product of the Mach number and non-dimensional 
boundary-layer height, M ,  whlc ,  influence the form of the pressure spectrum. For 
plates in air the fluid-loading factor is very small, so that the first term in (3.7) is 
generally negligible in comparison with the second. The inequality then reduces to 
cos q5 > 0, so that there is a singularity for downstream-propagating spectral 
elements with nearly sonic phase speeds. This is the same as the hard-surface case. 
Plates in air arc generally sufficiently massive, compared with the effective fluid 
loading, to behave like a hard surface. But in underwater applications the Auid 
loading is greater and the Mach number is low, so that the pressure spectrum is 
dominated by the surface properties. Then the first term in (3.7) is much larger than 
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the second, and a singularity occurs for modes with nearly sonic phase speeds 
whenever N is greater than 1 + M I  cos $. This condition means that if V ,  the flexural 
wave speed in vaczco, is faster than the sound speed in the moving fluid, or equivalently 
if the plate has a ‘ spring-like ’ response for modes with sonic phase speeds, the pressure 
spectrum is singular for spectral elements with phase speeds nearly equal to the sound 
speed. If, however, V is subsonic, (3.8) shows that the singularity owurs for spectral 
components with phase speeds nearly equal to  V .  These points are illustrated by the 
plots of D,, in figure 3. The graphs are for the case M I  = 0. In  figure 3 ( a )  the bending 
wave speed V is subsonic, and, as predicted by the asymptotic theory for heavy plates, 
the pressure spectrum is finite for elements with sonic phase spec&, but i t  has a 
singuIarity for a particular spectral component whose phase speed is nearly equal to 
V .  For the case illustrated in figure 3 ( b )  the bending wave speed is supersonic, and 
then the pressure spectrum is finite for modes with phase speeds nearly equal to V ,  
but is singular for nearly sonic modes. The values of N and mw/p,c used in figures 
3(a,  b )  correspond to  a 5 cm thick steel plate in water at frcquenc*ies of 3 kHz and 
6 kHz respectively. 

3.3. Xound-absorbing surfaces 

Flow over a sound-absorbing liner is known to influence its performance. An analysis 
of the effect of flow on liners in ducts is complicated by the duct modes (see Tester 
1973a,b). But (2 .23 )  can conveniently be used to determine the effect of flow and 
the surface properties on the simpler and analytically tractable problem of sound 
generated by turbulence near a plane sound absorber The surface properties will be 
described in tcrms of an impedance Z(k,w), where Z(k,w) is the ratio of the 
surfacv-pressure perturbation to the normal surface velocity v3 a t  wavenumber k and 
frequcncy 0; Z(k, w )  = -iX(k, w ) / w .  Z(k, w )  relates the mean energy absorbed by 
unit area of the absorber in unit time to the surface pressure spectrum, since 

Since the surface absorbs energy, Re Z must be negative. 
The predicted surface-pressure spectrum is equal to  

where Dij is given by (2 .22 )  with X(k, w )  = iwZ(k ,  0). Figure 4 shows plots of DI, 
forZ(k, w )  = -3pocT3ipocwithwpositive.Thedampingdueto theenergyabsorbedby 
the surface ensures that all modes decay rapidly, and so there are no singularities 
in the surface-pressure spectrum. But, even so, some of the features observed in the 
case of the bending plate are still apparent. In  figure 4(a), Im 2 is positive and the 
surface has a ‘spring-like’ response, while in figure 4 ( b )  Im Z is negative and the 
surface is ‘mass-like’. A comparison of figures 4 ( a , b )  shows that the pressure 
spectrum for spectral elements with sonic phase speeds is larger for a ‘spring-like’ 
surface than for a ‘ mass-like’ surface. This is because for a ‘spring-like’ surface only 
damping prevents the pressure spectrum from being singular for these sonic spertral 
components, while for a ‘mass-like’ surface both the finite surface impedance and 
damping control the level of the pressure spectrum. It is apparent from figure 4 that 
a spring-like surface is more effective a t  absorbing the sound energy than a mass-like 
surface ; and also that more sound energy propagating upstream is absorbed than that 
propagating downstream. 
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FIGURE 4. Plots of z = 20 log,, IcD,,/wJ vs. non-dimensional wavenumber K = k ,  c / w  for a sound- 
absorbing surface with k, = 0, M ,  = 0.2, whlc = 0.1, and (a) Z = -3p,c+Sip,c, ( b )  Z = 
- 3p,c - 3ip,c. 

4. Conclusions 
An analogy has been derived between the sound produced by turbulence in a 

boundary-layer flow and quadrupoles adjacent to a vortex sheet and a flexible 
boundary. The effect of the surface properties and mean flow on the sound field is 
brought out explicitly through the use of a Green function. This analogy has been 
used to derive a general expression for the low-wavenumber wall-pressure spectrum 
induced by a turbulent boundary layer over a surface. Although the analogy is always 
formally exact i t  is particularly relevant for these low-wavenumber spectral elements, 
because elements with wavelengths long in comparison with the boundary-layer scale 
are unable to detect the details of the velocity profile in the boundary layer. Hence 
a vortex-sheet analogy can be expected to demonstrate the essential structure of the 
low-wavenumber turbulent-pressure spectrum. The predicted pressure spectrum on 
a hard surface is found to be singular for spectral elements propagating downstream 
with an approximately sonic phase speed. This singularity is due to a trapped free 
mode of the system which propagates downstream supersonically within the stationary 
fluid in the boundary layer but is just subsonic in the moving stream. The next 
problem considered is that of a bending plate. It is found that plates in air are 
generally sufficiently massive compared with the effective fluid loading to behave like 
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a hard surface, but in underwater applications the pressure spectrum is dominated 
by the surface properties. I n  this limit V ,  the speed of flexural waves in the plate 
in vacuo, plays a crucial role in determining the form of the pressure spectrum on 
the plate. If V is subsonic, the predicted pressure spectrum has a double pole for 
spectral components whose phase speed is nearly equal to V ,  and the pressure 
spectrum remains finite for elements with sonic phase speeds. The position of the 
singularity is quite different when the flexural wave speed V is supersonic; then a 
singularity occurs in the pressure spectrum for spectral elements with sonic phase 
speeds. Finally, for the case of a surface covered by sound-absorbent material, both 
the mean flow and the surface properties affect the pressure spectrum. lnvestigation 
of the surface-pressure spectrum shows that a surface with a ‘spring-like ’ response 
is more effective a t  absorbing the sound energy than one with a ‘ rnass-like ’ response 
and the same damping. 

It is a pleasure to  thank Professor J. E. Ffowcs Williams and Dr I. Roebuck for 
their helpful suggestions and interest in this research. This work has been carried out 
with the support of the Procurement Executive, Ministry of Defence. 

Appendix. The physical interpretation of Go and GI 

We define a direct Green function GD(z, sly, 7). GD(z, sly, 7) is to  be the acoustic 
pressure disturbance a t  (z, s) due to  a point source a t  (y, 7) adjacent to  a vortex sheet 
with mean position So and a compliant boundary with mean position C,. We can show 
that GD and G are related. 

GD is a solution of 

in Vy, 

where V:, are the initial regions within V ,  and V,. GD satisfies conditions of 
continuity of pressure and continuity of particle displacement across the vortex sheet 
So. These conditions can be written as 

GP = Gf on X,, (A 2) 

and tD, the particle displacement caused by the point source, is continuous across 
So, where 

(A 3) 
a z p  aGg D y  aup 

aZ3 P o w -  8x3 . Po- -~ - -~ - - 

G,D also satisfies the impedance condition 

T ( z , ,  k, w )  = X(k, o ) p ( k ,  w )  on C,. (A 4) 

Since C, is linearly disturbed from rest, the surface displacement tD is related to G,D 

From the definition of the S-function we can write 

H,GP(x,tly,~) = J H , G ~ ( ~ , ~ ~ ~ , ~ ) ~ ( ~ - x , t - s ) d ~ ~ d s .  
m 
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H ,  is a Heaviside function which is unity within V: and zero elsewhcre. Using (2.8) 
we obtain 

H0G?(x, t Jy ,  7) = G? ---c2V2 G0(z,  S I X ,  t )  d3zds s,, (::2 

= Jv! Go (&- c2V2) G?(z, S I X ,  t )  d3z ds  

after an  application of Green’s theorem. Finally we can use (A 1 )  and write 

In  a similar way we can show that 

where 

59 = c 2 s  8 2 3  
( G p s - G o g ) d S d s ,  d Z 3  

CO 

Yo = c2 6, aGo (G?--Go-)dSds, aG? az3 az3 

Parseval’s theorem enables 59 to be rewritten as 

from (A 4) and (A 5). The integral is identically zero because (2.1 1) shows that 

We can use the boundary conditions (2.10) and (A 3) to rewrite Yo: 
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by integration by parts. Then using (2.10) again 

after a further int,egration by parts. Finally ED can be eliminated by the condition 
(A 31, and we find 

= Y1. 
The required reciprocal relationship follows from (A 9) as 

H , , G ~ ( x , t l y , ~ ) + ~ ~ G ’ ( x , t l y , ~ )  = H O G O ( y , ~ l x , t ) + ~ , , G , ( y , ~ l x , t ) .  (A 10) 

The Green function that appears in our analogy is therefore the response due to 
a point source adjacent to  a vortex sheet and a compliant boundary. This is more 
general than the reciprocal relationship proved by Dowling et al. (1978). There the 
reciprocal Green function was only recognized as the vortex-sheet Green function in 
the far field. Equation (A 10) is, however, valid everywhere. 
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